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Abstract

In this note we describe an analysis of the combined spatial and tem-
poral convergence of a hydrodynamics algorithm in the Crestone Project.
Unlike previous analyses, in this study we examine the space-dependent
and time-dependent aspects together. The analysis of the combined spa-
tial and temporal characteristics of an algorithm leads to a set of nonlinear
equations that must be solved numerically. The unknowns in these equa-
tions are parameters, including the asymptotic convergence rates, that
provide verification metrics. These metrics quantify the performance of
the software implementation of the algorithm by gauging the difference be-
tween the computed and exact solutions. Restricted to a smooth problem,
the design accuracy of the algorithms should be achieved. While we focus
on the Euler equations of hydrodynamics in this note, the analysis pre-
sented contains the elementary concepts in sufficient detail to apply this
technique to a variety of different algorithms or physical circumstances.

1 Introduction

In this study we examine the space-dependent and time-dependent aspects of
a hydrodynamics algorithm in the Crestone Project on a smooth! problem.
Unlike the more common spatial convergence analysis, the combined spatial
and temporal analysis leads to a set of nonlinear verification equations that
must be solved numerically. The unknowns in this set of equations are various
parameters, including the asymptotic convergence rates, that quantify the basic
performance of the software implementation of the algorithm.

Whereas in previous reports we examined algorithm behavior on problems
with discontinuous solutions (e.g., shocks) [5, 6, 7], in this note we focus on
a smooth problem. We do so in order to ascertain the design accuracy of the
underlying algorithm, the characteristics of which are known for smooth solu-
tions. Such a demonstration of code convergence is a fundamental aspect of
verification analysis, providing evidence with which to establish the correctness
of the software implementation of an algorithm.

Essentially all of the descriptions in this note are referenced to the analy-
sis of the Euler equations of compressible hydrodynamics. These equations are
a fundamental component of the partial differential equations (PDEs) used in
hydrocodes [1]. While we focus on the Euler equations in this note, the anal-
ysis we present is applicable to a range of numerical algorithms based on the
simultaneous space- and time-discretization of PDEs.

The primary nomenclature and procedures are introduced in §2, which con-
tains detailed descriptions of combined spatial and temporal asymptotic con-
vergence analysis for the Euler equations of hydrodynamics. This discussion

n this note, by a “smooth” problem we mean one that possesses sufficiently many deriva-
tives so that all differentiation operations can be carried out.



provides the framework for the smooth advection problem discussed and ana-
lyzed in §3. We summarize the contents of this note in §4.

2 Combined Space and Time Convergence Anal-
ysis for the Euler Equations

Whereas many discussions of convergence analysis are couched in general terms
applicable to a broad spectrum of PDEs [9, 11], in this note we restrict our
attention to the Euler equations for hydrodynamics. We constrain this note to
these equations as they form the basis for hydrocodes [1].

2.1 The Euler Equations of Compressible Hydrodynamics

The Euler equations summarize the conservation of mass, momentum, and en-
ergy. For a single inviscid, compressible fluid, these equations of two-dimensional
motion in Cartesian coordinates are:
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where p is the mass density, (u,v) are the components of the velocity vector in
Cartesian coordinates (z,y), t is the time, E = e + 1(u? + v?) is the specific
total energy, e is the specific internal energy, and p = p(p, e) is the pressure.
These equations can be written more compactly as
oUu
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where U = [p, pu, pv, pE] " is the array of conserved variables, div is the diver-
gence operator, and F = F(U) = (F,(U), F,(U)) is the flux function.

To obtain numerical solutions, this continuum equation is approximated on
a grid that is discrete in both space and time. Furthermore, for the Crestone
project code, we consider an Eulerian grid onto which Eq. 2 is discretized. The
field of computational fluid dynamic (CFD) is largely devoted to (i) development
of appropriate discretizations of this and more general equations, together with
(ii) obtaining high fidelity solutions to those discretized equations. Both of these
areas are subjects of ongoing and intense research; achievement of either of these
missions, in all but the simplest of cases, can by no means be considered a fait
accompli.

The corresponding solution of the discretized form of Eq. 2 is indicated as
Uz-l,j. This value corresponds to U(z;,y;;t;), the solution at position (z;,y;) and



time t;. We say “corresponds to” because the nature of the precise relationship
between the discrete solution and the continuous solution depends on the so-
lution algorithm. In the subsequent discussion we assume a uniform and equal
spatial grid with Ax = Ay and uniform and equal timesteps At.

2.2 Interacting Space and Time Discretizations

The nature of the numerical scheme used to discretize continuous PDEs into
a set of discrete equations can affect the nature of the computational error as-
sociated with the numerical solution. For example, one can devise numerical
schemes for PDEs that produce separate, non-coupled spatial and temporal dis-
cretization errors. Modern high-resolution numerical schemes for conservation
laws (such as described in [3, 8]), however, may not retain strict separation of
spatial and temporal discretizations. Consequently, an interaction of the spatial
and temporal discretizations is at play in such methods. Such is the case for the
hydrodynamics algorithm of the Crestone project code, which uses a Godunov-
type method with Lax-Wendroff time differencing. For such an algorithmn, the
temporal dependence is interwoven with the spatial dependence through the
self-similar solutions to local Riemann problems.

To characterize the combined spatio-temporal dependence of the error in the
solution, we analyze the average per-cycle convergence properties by postulating
the following error Ansatz:

I€* = &l1/Naw, = & + A (Az;)’ + B (At)? +C (Azy)" (Aly)*
+ (A (A", (Aay)” (An)'), (3)

where ¢ is some functional of the solution (e.g, one component of U, say, p),
&* is the exact value, fﬁ is the value computed on the grid of spatial zone size
Az; with timestep At;, || - || is a norm?, Nay is the number of time cycles
taken to obtain the solution at the final time, &, is the zeroth-order error,
A is the spatial convergence coefficient, p is the spatial convergence rate, B
is the temporal convergence coefficient, q is the temporal convergence rate, C
is the spatio-temporal convergence coefficient, and r + s is the spatio-temporal
convergence rate.

The error Ansatz in Eq. 3 averages out the location-to-location, cycle-to-
cyle dependence of the computed results on Az and At, yielding a measure
of typical per-cycle solution algorithm performance. To put this Ansatz into
perspective, consider the key aspects of the quantity under consideration, i.e.,
of the norm of the difference between the exact and computed solution, divided
by the number of computational cycles. The solution norm, which is typically
a discrete approximation to some integral of the norm’s argument, can be in-
terpreted as a spatial averaging operator; that is, the norm quantifies some

2In this case, a norm is a mapping of the solution at a specified time on the discrete grid
to the non-negative real numbers; see [4] for further details.



mean measure of the spatial behavior of the solution difference. The quotient of
this quantity divided by the number of computational cycles likewise provides
a temporal averaging operator; unlike the spatial norm, however, this operation
produces a mean per-cycle measure.

2.3 Equations for Global Space and Time Convergence
with a Known Exact Solution

As discussed in [7], there are several canonical cases, depending on the relative
magnitudes of various parameters in Eq. 3. We retain the various parameters
characterizing the spatial and temporal convergence in Eq. 3.

We make two additional assumptions prior to describing the technique by
which we determine these parameters: (i) we assume that the zeroth-order error
is negligible, i.e.,

€| < | A (Az)? || B (At)? |,|C (Azy)" (At)” |; (4)

and (ii) we presume that we know a priori the exact solution &* at any grid
location at the desired time. These assumptions imply that there are a total of
seven unknowns in Eq. 3: A, p, B, q, C, r, and s. To solve for these quantities,
we require seven independent equations. To do so, we obtain computed solutions
at the same final time with the following seven combinations of spatial and
temporal zoning:
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where o > 1 is the ratio of the spatial grid sizes, and 7 > 1 is the ratio of
the temporal grid sizes. This set of zonings is neither unique nor demonstrably
optimal for obtaining solutions of Eq. 3; however, it does provide a sufficient set
of independent information with which to obtain solutions for the unknowns in
Eq. 3. Together with the no-zeroth-order-error assumption, the computed solu-
tions on these space-time grids satisfy the following equalities at the (identical)
final time:

0=fi = —||g" = &ll/Ne +A (Az.)” +B (At.)" +C (Az.)" (Ate)’,
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0=f3 = —[|" = &||/Ne +A (Axf) B (Ate)" +C (Azy)" (Ate)”,
0=f1=—[I€" = &||/Nim +A (Azc)" +B (Aty)+C (Aze)" (Atm)”,  (6)
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0=fr = 1€ = &Ill/Ny +A (Azp)"+B (Atg)? +C (Azm)" (Aty)°.



In these expressions, Az, = Az is the coarse spatial grid size, Ax,, = Ax/c
is the medium spatial grid size, and Axy = Az/o? is the fine spatial grid
size; similarly, At. = At is the coarse timestep, At,, = At/7 is the medium
timestep, and Aty = At/7? is the fine timestep. Also, N., N,,, and Ny
represent the number of time cycles involved in computing the solutions with
the coarse, medium, and fine timesteps, respectively.

This set of seven equations depends on the variable a = [ag,... 7a7]T =
[A,p,B,q,C,r,s]"
0=f1 =—[|&" — &l|/Ne +a1 (Aze)™ +ag (Ate)™ +as (Awe)™ (Ate)™,
0 =fa =—|[§* — &||/Ne +a1 (Azy,) )" +a3 (AtC)M +as (Aﬂvrn)a6 (AtC)a7a
0=fs =€ = &||/Ne +ar (Axy)*™ +az (At)" +a5 (Azp)® (Ate)™,
0 =f1 =—§" — &ll /N +as (AQJ"C)(L2 +as (AtM) as (AxC)aa (Atm)a7v
0=fs =€ = &||/Ny +ar (Aze)*™ +as (A +a5 (Aze)™ (Aty)™,
0 =f6 =—[|€" = &l|/Nim +a1 (Azy)* +as (Atm)* +as (Awpn)*® (Atm)*7,
0 =fr =—|lg" = &ll/Ny +ar (Azp)**+as (Atp)™ +as (Azm)™ (Aty)""

where the indices correspond to the numbering in Eq. 5. To obtain solutions
to this set of nonlinear equations f(a) = 0, we use a modified line-search based
Newton’s method [10]. It is straightforward to obtain closed-form expressions for
the elements of the corresponding Jacobian J, with elements J; ; = 0f;/0a;,
the inverse of which is typically evaluated numerically in Newton’s method-
based routines.

To obtain solutions to Eq. 7, one must: (i) obtain numerical solutions from
the hydrocode to the fixed final time using the spatial and temporal grids spec-
ified, and (ii) assign an initial guess for the array a that is within the domain
of convergence of the iteration. The former is merely a matter of relatively
meager computer resources, whereas the latter requires some a priori knowl-
edge of the algorithm of interest; the obvious choice for initial guess consists of
the algorithm’s theoretical convergence rate together with, say, estimates of the
convergence parameter from a purely spatial convergence analysis. There are
two additional practical concerns in this procedure. The first is that of properly
assigning the parameters associated with convergence in the Newton’s method
implementation; this is a matter requiring some user interaction, using guidance
from the Newton’s method routine. The second is that of resolving any multiple
solutions obtained to this set of nonlinear equations; response to this issue will
vary on a case-by-case basis.

3 Convergence Results for a Smooth Problem

To test the underlying hydrodynamics algorithms on smooth problems we con-
sider a problem that possesses smooth initial conditions and that is evolved to
a point prior to the development of any discontinuities. Whereas one approach



2-D Sinusoidal Density Advection Problem Initial Conditions

v p p e K
1.4 | 2+4sin27z sin27y | 1.0 | 2.5/ (2 + sin 27z sin27y) | 1.0 | 1.0

Table 1: Initial values of the adiabatic exponent , nondimensional density p,
pressure p, SIE e, x-velocity u, and y-velocity v for the 2-D sinusoidal density
advection problem.

would be to use the Method of Manufactured Solutions [12], we instead use
known solutions of the Euler equations; our approach obviates the need to deal
with extraneous source terms in the equations and possible modifications of
the solution algorithm. The numerical solutions that we obtain with different
spatial and temporal meshes are compared with the exact solution at identical
final times. The convergence properties of the coded algorithm are then inferred
following the procedure outlined above.

3.1 2-D Sinusoidal Advection Problem Initial Conditions

The two-dimensional, planar geometry initial conditions for this problem con-
sist of a sinusoidal distribution of density with initially constant and uniform
pressure, thermodynamically consistent specific internal energy (SIE), and uni-
form non-zero velocity (ug,vo). The equation of state (EOS) is chosen to be
a polytropic gas with adiabatic exponent v = 1.4. With periodic boundary
conditions, this configuration advects the sinusoidal density and SIE distribu-
tions, which remain unperturbed, through the computational mesh. If we write
the initial conditions as f(z,y), then the solution at any time ¢ is given by
f(x —ugt,y —vot). More precisely, the domain of interest is assigned to be
the square of unit dimension centered at the origin in Cartesian geometry, i.e.,
{(z,y): —1/2 <x <1/2and —1/2 <y < 1/2}. The initial conditions for this
problem are given in Table 1.

One caveat to this problem is that it tests only the linear fields in the govern-
ing equations. We are investigating the smooth simple wave problem proposed
by Cabot [2] as a complementary problem that exercises the nonlinear fields of
Eq. 2.

3.2 Results for a Crestone Project Hydrodynamics Algo-
rithm

Calculations of all problems were carried out with a Crestone Project code
on uniform grids comnsisting of 32 x 32, 64 x 64, 128 x 128, and 256 x 256
zones. Timesteps of 1/1600, 1/3200, 1/6400, 1/12800 were used. Thus, both the



subsequent spatial and temporal zone sizes used in computing the convergence
properties were a factor of two smaller, i.e., 0 = 7 = 2 in the nomenclature of
the previous section. These timesteps are well below the CFL limit for this set
of calculations: for the parameters chosen, the maximum sound speed is 1.183,1
so0, according to Eq. 8, the maximum CFL value attained is

Crnae = (max{|ul, |[v|} + ¢maz) Atmaz/AZmin = 0.044 < 1. (8)

To ensure that the uniform spatial grid was retained, no adaptive mesh re-
finement (AMR) capabilities were utilized in these simulations. These sets of
calculations provide data with which verification metrics, i.e., the quantities
characterizing the spatial and temporal convergence of the fundamental hydro-
dynamics algorithm, were obtained.

As in all such verification analyses, it must be stressed that the solution
values must be compared at identical locations in space at ezactly the same time.
Simple interpolation of solutions provides values at identical spatial locations [5,
6], and the choice of fixed timesteps allows solutions to be obtained at the
identical final time, ¢t = 0.1.

The results of the suite of calculations conducted on 32 x 32, 64 x 64, and
128 x 128 grids are presented in Table 2, and results based on 64 x 64, 128 x 128,
and 256 x 256 grids are given in Table 3. While the spatial and combined spatio-
temporal convergence rates (i.e., p and r + s) are approximately two in all cases,
at the finer temporal resolutions (e.g., for At = 1/6400 and 1/12800) there
appears to be a marked decrease in the temporal order of the algorithm (i.e.,
q), to approximately first order. There are two obvious explanations for this
behavior: (1) the nonlinear solver used in the convergence analysis, described in
§2.3, has converged onto this solution, while a solution with ¢ &~ 2 may still exist
but was not found, and (2) the behavior of the temporal integrator degrades
at smaller timesteps, which correspond to smaller CFL numbers (see Eq. 8).
The former issue could be examined with numerical methods that identify all
roots of nonlinear systems of equations; the results of such an investigation may
shed light on the likelihood of the latter possibility. At this point, however, it
is unclear which of these explanations is most plausible.

There are possible implications of these preliminary findings for the interac-
tion of the hydrodynamics algorithm solution with the Crestone Project adap-
tive mesh refinement (AMR) techniques. This study did not exercise any AMR
capabilities, which can be used to locally refine the spatial discretization of the
solution. If the global timestep for the entire computational mesh is assigned so
that it does not violate the CFL condition in the smallest zone, then the cor-
responding CFL number in the largest zone may well be significantly smaller.
Our limited findings suggest the possibility of degradation of the temporal order
of accuracy to approximately one at very small CFL numbers for the advection

IThe maximum soundspeed is given by cmaz = A /Y Pmaz/Pmin = 1.183.



t = 0.1 Convergence Results for 32x32, 64 x64, and 128 x 128 Grids

At N, [Ax10°] p [ Bx10®2] ¢ [Cx10%2] s
1/1600 | 160
1/3200 320 1.00 1.90 0.67 1.95 1.00 0.90 | 0.90
1/6400 640
1/3200 320
1/6400 640 1.00 2.00 0.24 1.89 1.02 1.00 | 1.00
1/12800 | 1280
1/6400 640
1/12800 | 1280 1.00 2.00 —5.82 1.13 1.08 1.08 | 1.00
1/25600 | 2560
1/12800 | 1280
1/25600 | 2560 1.00 2.00 | —6.43 | 1.13 1.04 | 1.01 | 1.00
1/51200 | 5120

Table 2: Convergence quantities for the smooth advection problem calculated
with 322, 642, and 1282 zones on the unit square with the indicated timesteps
At and number of computational cycles N.. The other parameters are defined
in the text.

problem considered. If this behavior were to be true in general, then the pos-
sibility exists that the temporal integration errors in large zones could be at
(approximately) first order while the corresponding temporal integration errors
in small zones may be (approximately) second order. Of course, the cumulative
effect of this phenomenon on overall solution accuracy would be problem de-
pendent. Given the speculative nature of this observation and the possibilities
raised in the preceding paragraph, further investigation and elucidation of the
details of space and time convergence analysis seems warranted.



t = 0.1 Convergence Results for 64 x 64, 128 x 128, and 256 x 256 Grids
At N, [Ax10°] p [ Bx10®2] ¢ [Cx10%2] s
1/1600 | 160
1/3200 320 1.00 2.00 0.78 1.97 1.02 1.01 | 1.00
1/6400 640
1/3200 320
1/6400 640 1.00 2.00 0.28 1.89 1.05 1.01 | 1.00
1/12800 | 1280
1/6400 640
1/12800 | 1280 1.00 2.00 —2.48 1.56 1.07 1.01 | 1.00
1/25600 | 2560
1/12800 | 1280
1/25600 | 2560 1.00 2.00 | —6.43 | 1.13 1.08 | 1.02 | 1.00
1/51200 | 5120

Table 3: Convergence quantities for the smooth advection problem calculated
with 642, 1282, and 2562 zones on the unit square with the indicated timesteps
At and number of computational cycles N.. The other parameters are defined
in the text.

4 Summary

In this note we have performed convergence analysis in both space and time
on a smooth problem for a hydrodynamics algorithm in the Crestone Project.
The fundamental assumption of this analysis (Eq. 3) is that the mean per-cycle
error in the computed solution varies as a polynomial in the computational cell
size and computational timestep, with the exponents in this expression being
the convergence rates. Unlike the direct evaluation of convergence properties
for the standard spatial convergence analysis, the combined space-time analysis
requires the numerical solution of a set of nonlinear verification equations. Ob-
taining solutions to this set of equations, while straightforward, is more involved
than directly obtaining the results for the space-only or time-only convergence
behavior.

The descriptions of the assumptions underlying this analysis are given in
§2, where the equations governing this approach are derived. An application of
this analysis is provided using the smooth advection problem specified in §3.1.
The results of our study, described in §3.2, demonstrate that the underlying
advection algorithm is indeed second order in space. In contrast, the temporal
integrator exhibits second order behavior for coarser temporal grids but tran-
sitions to nearly first order for finer timesteps. The combined spatio-temporal
rate of convergence is nominally two at all resolutions considered.



Using the methodology presented herein, one can implement a combined
space-and-time convergence analysis procedure by which to verify software im-
plementations of discrete numerical algortihms used in obtaining space- and
time-dependent solutions of PDEs.
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